International Journal of Computer Science and Engineering (IJCSE) ISSN 2278-9960 Vol. 2, Issue 2, May 2013, 17-22 © IASET

AUDIO CLUSTERING USING DATA MINING

MEENU¹ & SHEVETA VASHISHT²

¹Assistant Professor, CT Institute of Management and IT, Punjab, India ²Assistant Professor, Lovely Professional University, Punjab, India

ABSTRACT

Automatic genre classification from audio has been an area of active research due to its importance in music information retrieval systems. The clustering process in data mining is to arrange similar data into groups. The purpose of clustering algorithm is to divide s dataset into several groups that are similar within a group is better than among groups. The multimedia files grow day by day.

As concern of music and audio, millions of files spread every day. The automatic organization of these music or audio files is a difficult task. In this paper, we are identifying an approach which will make the clusters of music and audio files by accessing parameters like key, tempo, rhythm etc.

KEYWORDS: Dataset, Clustering, K-Mean

INTRODUCTION

Data mining offers great promise in helping organizations uncover patterns hidden in their data that can be used to predict the behavior of customers, products and processes. Data Mining is the process of identifying new patterns and insights in data.

As the volume of data collected and stored in databases grows, there is a growing need to provide data summarization by identify important patterns and trends. The music which in the olden days was limited to live concerts, performances or radio broadcasts is now available at everyone's finger tips within few clicks.

Music has thus become very easily accessible and available. Music is one of the most popular types of online information and there are now hundreds of music streaming and download services operating on the World Wide Web. Some of the music collections available are approaching the scale of ten million tracks and this has posed a major challenge for searching, retrieving and organizing music content [1].

The size of database in all applications is huge where the number of records varies from thousand to thousands of millions. The clustering is process in which algorithms are applied to discover similar data and make a group of that data. Automatic clustering of music into different group is important as a way to organize large number of music or audio files on the web. Different clusters of music and audio can be different according to their parameters.

Musical databases are easily accessible over computer networks through internet. It is basic need to organize such database in better manner because music is a multifaceted, multi-dimensional medium, it demands specialized representations, abstractions and processing techniques for effective search that are fundamentally different from those used for other retrieval tasks.

Music emotion detection and classification has been studied and researched before. Initially most of them adopted pattern recognition approach. The research area of music data mining has gradually evolved during this time period in

order to address the challenge of effectively accessing and interacting with these increasing large collections of music and associated data such as styles, artists, lyrics and music reviews. The system's aim to discover the connections between emotions and affective features and based on that features predict the emotions from music automatically.

Today, the overall music collection can count to a few millions of records in the whole world and still continue to increase every day. As it is a well established fact that music indeed has an emotional quotient attached with it, it is very essential to know what are the intrinsic factors present in music which associate it with particular emotion.

The research is going on in capturing various features from the audio file based on which we can analyze and classify a list of audio files.

Audio features were initially studied and explored for application domains like speech recognition [2]. Clustering is also a data mining task of discovering groups and structures of data which are in some way similar to each other and differ in similar way from other groups.

RELATED WORK

This section reviews some of the related work on affective music mining. There is a large body of previous work on mining affective features from music e.g., music recommendation according to emotions, Indian music genre of songs is a difficult task.

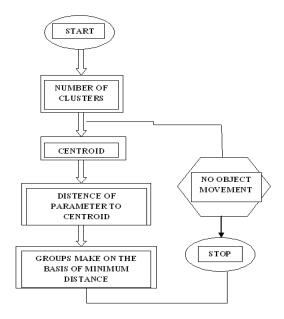
The performance of various features extracted from the audio signal in terms of the separability of the five classes of Indian music using Gaussian mixture model and knearest neighbour classifier.[3]

There is a joint emotion topic model by augmenting latent Dirichlet allocation with an intermediate layer for emotion modeling. Music elements which affect the emotion include melody, rhythm, tempo, mode, key, harmony, dynamics and tone color.

Among these music elements, melody, mode, tempo and rhythm have stronger effects on emotions. In this research we will develop a system which aim to discover connection between different features like melody, rhythm etc and evaluate social emotions.

We will make a data set which contains different discrete values of features of particular audio. To get the discrete values we used music tools like audacity.

The system will make clusters and do classification by mining discrete values from data set. [4] We will make that this system also applicable for online audio.


CLUSTERING ALGORITHM

In the k means clustering algorithm, the first parameter that needs to be specified is the value of K that is the number of clusters. After this value determined, these k points are chosen as cluster centers.

All instances that need to be classified are assigned to their closest cluster center, according to simple Euclidean distance metric.

Next, the centroid or the mean of all instances in each cluster is calculated. These center or mean values are taken to be the new center values for their respective clusters.

The process is then repeated iteratively until the same points are assigned to cluster centers in consecutive rounds, at which stage the cluster centers are stabilized and do not change after this point.[5]

FEATURES TO PREDICT EMOTIONS

When you listen to a piece of music, you notice that it has several different characteristics; it may be soft or loud, slow or fast, combine different instruments and have a regular rhythmic pattern. All of these are known as the elements of music. Music consists of numerous features. Among them, pitch, rhythm, timbre, and dynamics are considered to be the most semantically important ones in particular; pitch carries the highest relative weight of information followed by rhythm. [6] The feature selection and extraction process can be separated based on the representation of the music piece in symbolic and acoustic feature extraction, while the former can also be divided into monophonic, homophonic and polyphonic.

Melody: It refers to the tune of a song or piece of music. It is the memorable tune created by playing a succession or series of pitches. Melody is the main tune of a song; the outcome of a series of notes. Melody is regarded as "horizontal" because its notes are read from left-to-right. Melody is a musical and successive line of single tones or pitches perceived as a unity. Melody is the tune of the music. If you hear a song, the line that you would probably sing is the melody.

Rhythm: It may be defined as the pattern or placement of sounds in time and beats in music. Roger Kamien in his book Music: An Appreciation defines rhythm as "the particular arrangement of note lengths in a piece of music. [8]" Rhythm is shaped by meter; it has certain elements such as beat and tempo.

Tempo: The speed at music is or should be played. The Italian word at the beginning of a music piece that indicates how slowly or fast the piece should be played. This is called the tempo which is effective throughout the duration of the music unless the composer indicates otherwise.

Pitch: The relative lowness or highness that we hear in a sound. The pitch of a sound is based on the frequency of vibration and the size of the vibrating object. The slower the vibration and the bigger the vibrating object, the lower the pitch; the faster the vibration and the smaller the vibrating object, the higher the pitch.

Harmony: Harmony is produced when two complementary notes sound simultaneously. Harmony is found in chords or can be played along a main melody. Harmony is being vertical because harmony is only achieved when notes are played at the same time. Melody, on the other hand, is "horizontal," since its notes are played in succession and read horizontally from left-to-right.

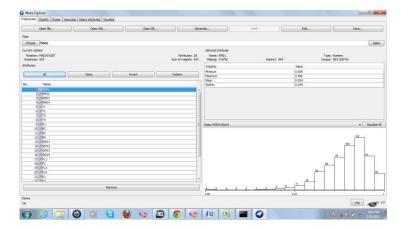
Key: In music a key is the major or minor scale around which a piece of music revolves. A song in a major key is based on a major scale and a minor key is based on a minor scale.

Texture: Texture refers to the number of individual musical lines and the relationship these lines have to one another.

DATASET FOR CLUSTERING

Dataset: dataset is a collection of related sets of information that is composed of separate elements. [9]

-										INPO/MINA	T - Microso	T EICEI								0	-
	Home	Insert	Page La	yout Po	mulas I	Data Re	nem Vie	w PDF													-
Ĉ	a cut		Calibri	- 11	* A' A'	==	-%	📑 Wrap	Text	General		-				*	Σ Auto	Sum · A	A	R	
Paste		nat Painter	BI	u · 🖽 ·	<u>ه</u> - <u>۸</u> -	EE	≡ 律律	Merg	e & Center -	\$ - %	• 18 :		ional Form		Insert D	elete Forma	Clean		& Find &	Sign and Encrypt *	
	Cipboard	1 6		Font			Align	ment	9	Nu	nber		Styles		0	Celts		Editing		Privacy	
_	A1		0	fx RMS	L.																_
	A	8	С	D	ε	F	G	н	1	1	к	L	м	N	0	Р	Q	R	s	T	
R7	MS1	RMS2	RMS3	RMS4	T1	T2	T3	T4	81	82	B3	84	SKW1	SKW2	SKW3	SKW4	FL1	F2	FL3	FL4	к
	0.90545	0.423896	0.053436	0.975297	119.3834	5.016602	-0.22212	0.9625	0.562142	0.115943	0.13455	0.975758	381.4646	421.0507	0.525302	0.961021	0.108903	0.055307	0.426287	0.961537	7 1
0	0.927108	0.372336	0.150063	0.971002	129.7908	22.73779	0.163958	0.961138	0.447294	0.15311	0.178806	0.973249	381.0832	282.3574	0.393309	0.955817	0.134215	0.088495	0.158332	0.974678	8 1
0	0.912335	0.411937	0.099033	0.973327	135.6123	41.73917	-0.04516	0.962631	0.483041	0.177771	0.226341	0.972077	272.4802	201,4652	0.20012	0.977757	0.15018	0.102843	-0.03005	0.973183	2
0	0.925833	0.378511	0.098218	0.972685	126.4085	30.3103	-0.44461	0.962876	0.412205	0.157032	0.046283	0.974174	244.0679	214.0469	0.506095	0.948269	0.127678	0.065244	-0.06177	0.977944	1
0	0.910034	0.413301	0.011474	0.972714	120.929	28.70722	-0.14661	0.959601	0.364552	0.144923	-0.26426	0.974618	3572.773	4355.21	-0.25172	0.94789	0.110585	0.05393	0.072363	0.971471	1
0	0.885653	0.454218	0.05556	0.970775	105.025	3.026274	0.116337	0.961229	0.491933	0.194811	-0.01079	0.976393	406.4	330.5828	0.214058	0.965055	0.156503	0.076856	-0.12559	0.971735	5
0	0.930211	0.365865	-0.03145	0.974925	126.5905	26.63704	-0.14023	0.964943	0.620345	0.113736	-0.21343	0.974009	486.9351	452.1397	0.209016	0.952338	0.178824	0.052402	0.103639	0.974361	1
0	0.924271	0.382185	0.058112	0.972235	104.5085	21.28888	0.05576	0.963978	0.513515	0.208902	0.030506	0.972233	669.2939	599.3394	0.138173	0.967042	0.157999	0.060245	0.084071	0.972307	7
0	1.847206	0.532685	0.057407	0.974112	144.4707	25.9446	-0.16519	0.962272	0.169395	0.154368	0.460876	0.965381	5235.396	6605.935	-0.27444	0.951859	0.063921	0.041386	0.463296	0.970636	5
	0.9013	0.432743	-0.03511	0.971446	114.3022	31.75671	-0.00789	0.958901	0.235586	0.11732	0.244878	0.966293	17155.81	19674.06	-0.02055	0.901717	0.090636	0.033249	0.089817	0.977894	1
	0.923	0.385676	-0.04445	0.971822	155.1823	31.05881	0.492193	0.955752	0.503001	0.175922	0.036159	0.966557	947.365	1043.817	0.050979	0.940049	0.124125	0.056176	0.425695	0.954307	7
0	0.836444	0.546134	-0.00162	0.974002	137.658	47.42004	-0.14291	0.967575	0.477722	0.178746	0.086265	0.973761	1160.138	1156.928	0.125585	0.966768	0.153722	0.055107	0.091869	0.972516	5
0	0.879618	0.474337	0.094585	0.976567	139.661	36.78671	-0.08793	0.968098	0.320086	0.19752	0.42623	0.959394	326.7893	308.5895	0.534842	0.942658	0.122394	0.072966	0.448671	0.95527	7
0	0.927297	0.376326	0.028981	0.974007	121.4759	28.34075	0.018395	0.964837	0.474916	0.145382	-0.21422	0.975458	678.2628	570.7515	-0.09073	0.976003	0.165281	0.060065	0.007249	0.972706	5
0	0.884693	0.456194	-0.01114	0.975683	125.0958	27.95001	0.043607	0.957399	0.19695	0.193692	0.330565	0.964222	2391.604	2184.008	-0.1152	0.974403	0.074825	0.053581	0.373808	0.956307	7
0	0.974319	0.227613	0.03168	0.973821	141.0915	31.05425	-0.31202	0.960034	0.165189	0.106423	0.231045	0.983802	2638.927	1128.427	-0.02509	0.96866	0.049256	0.032637	0.135033	0.980982	2
0	0.938209	0.348053	0.067185	0.973783	128.8425	25.0889	0.053594	0.957412	0.330158	0.182129	0.167946	0.959523	5962.591	3912.175	0.415423	0.966623	0.052267	0.02652	0.228487	0.972575	5
0	0.936216	0.354682	0.057591	0.972909	127.2265	24.9986	0.17005	0.953446	0.444896	0.151524	0.01328	0.972003	458.9989	325.7307	0.222889	0.969394	0.109529	0.03702	0.03081	0.972425	з
0	0.879418	0.478291	0.049305	0.974362	112.6318	29.36789	-0.28893	0.963977	0.556807	0.206359	0.235915	0.970605	380.4065	445.5092	0.512322	0.946723	0.154249	0.049976	0.161396	0.973292	2
0	0.943608	0.331086	0.030442	0.971539	113.8031	24.9934	0.305277	0.964283	0.265316	0.157494	0.534547	0.970599	1137.423	615,4771	0.240367	0.967971	0.075636	0.04708	0.514972	0.971385	9 1
0	0.920534	0.392806	0.019519	0.973314	167.5988	1.362643	0.062508	0.961521	0.442829	0.141255	0.38694	0.968745	1012.301	886.7169	0.248877	0.956744	0.076013	0.038204	0.210352	0.97293	3
0	0.952104	0.306724	0.129149	0.970141	117.1768	29.41463	-0.39567	0.963354	0.348787	0.155692	0.345979	0.974706	352.1035	241.9168	0.611863	0.930178	0.105128	0.045191	0.454125	0.971697	7
0	0.868307	0.497558	0.012972	0.974246	130.1816	22.43368	-0.1127	0.963671	0.375775	0.161107	0.427712	0.963315	798.3083	823.1453	0.094889	0.950355	0.101931	0.054479	0.532629	0.963175	5 1
	0.88524	0.463855	0.095824	0.973427	154.1021	32.29363	0.217113	0.963502	0.376839	0.159718	0.398707	0.973458	456.2451	486.7555	0.550469	0.937584	0.129578	0.06618	0.097959	0.977135	5
0	H MA	DATASET	192/										14			18					
ady																			103% 🕞		
-	1	5 100	16	1 10	I S	6		ER		N	12	X									


Dataset for clustering contain values of different parameters to predict emotions from the music. Is has been collected by using professional music tools.

EXPERIMENT AND RESULTS

The Weka Knowledge Explorer is an easy to use graphical user interface that harnesses the power of the weka software. Each of the major weka packages Filters, Classifiers, Clusterers, Associations, and Attribute Selection is represented in the Explorer along with a Visualization tool which allows datasets and the predictions of Classifiers and Clusterers to be visualized in two dimensions. [7]

Preprocess Panel

The preprocess panel is the start point for knowledge exploration. From this panel you can load datasets, browse the characteristics of attributes and apply any combination of Weka's unsupervised filters to the data.

Figure 1: Visualization of Parameters

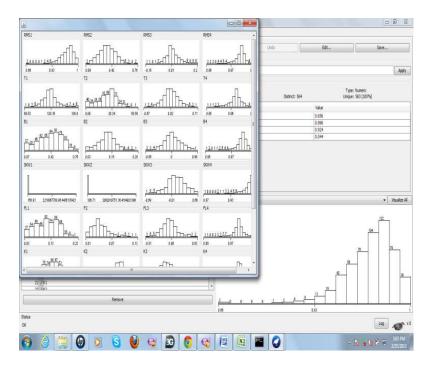


Figure 2: Visualization of All Parameters

Cluster Panel

From the cluster panel you can configure and execute any of the weka Clusterers on the current dataset. Clusters can be visualized in a pop-up data visualization tool.

	Associate Select attributes	visualize				_							
lusterer													
Choose SimpleKMea	ans -N 4 -A "weka.core.Eudidea	nDistance -R first	:-last" -1 500 -5 10										
Cluster mode		Clusterer out	Clusterer output										
Use training set		SKW1	7859816.7977	9136.9995	930.2638 47	194261.5824	17925.3237						
		SHW2	7377709.6238	8659.347	552.2741 44	299720.0967	16965.4145						
🕑 Supplied test set	Set	SKM3	0.1055	0.1378	0.0496	0.2445	0.0799						
🕑 Percentage split	% 66	SKW4	0.9663	0.9627	0.9713	0.9561	0.9678						
Classes to clusters evalu	año	FL1	0.113	0.0551	0.1485	0.1319	0.0943						
		F2	0.0432	0.0252	0.0461	0.0668	0.0368						
(Num) MOD4	Ψ	FL3	0.018	0.005	-0.006	0.0623	0.0249						
V Store clusters for visual	zation	FL4	0.9742	0.9753	0.9741	0.9741	0.9737						
		Kl	0.5766	0.6867	0.5237	0.5569	0.5908						
Ionore	attributes	K2	0.1419	0.1148	0.1459	0.1542	0.1433						
tyriore	0.01000003	K3	-0.0131	-0.0009	0.009	-0.0557	-0.0187						
Start	Stop	K4	0.9768	0.9766	0.977	0.9763	0.9769						
		MOD1	-0.0201	-0.0065	-0.02	-0.0253	-0.0233						
sult list (right-click for optic	ons)	MOD2	0.1134	0.133	0.1067	0.1111	0.1128						
5:02:58 - Simplek/Means		MOD3	-0.0069	-0.0424	-0.0043	-0.0074	0.0052						
		Mode Clustere	en to build model (1 and evaluation on d Instances 81 (14%)			conds							
		2	88 (33%) 94 (17%) 02 (36%)										

Figure 3: Result of Clustering

Preprocess Classify	y Ouster Associate	Select attributes Visu	alze								
Not Matrix	RMS1	RM52	RM53	RMS4	Tİ	T2	T3	T4	81	82	83
M004											
1003			*			4					
M002								-			1
M001									Stable		
• otSize: [100]							t scroling (uses more me	mary)			
ointSize: [1]							Update				
itter:						Selec	t Attributes				
Colour: MOD4 (Nu	n)					▼ Subt	Sample % : 100				
Class Colour					_						
0.9						0.94					0.5
etus (Log 💉
~	-										-

Figure 4: The Graphical Distribution of the Data in the Data Set

CONCLUSIONS

In this paper, we present a new problem that is making the cluster of audio by getting its parameters values by using audio tools and weka. The work has been done up to clustering of music and audio through these parameters. As for future work, we are planning to classified music and audio by the result of clustering. Classification after clustering will improve the result.

REFRENCES

- Michael A. Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe Rhodes, and Malcolm Slaney, "Content-Based Music Information Retrieval: Current Directions and Future Challenges", Proceedings of the IEEE, Vol. 96, No.4, April 2008, pp. 668-696.
- 2. Automatic Music Genre Classification for Indian Music S.Jothilakshmi 1+, N. Kathiresan 2
- 3. Rabiner, L, Juang, B, "Fundamental of speech recognition", New York, prentice- hall
- 4. Mining Social Emotions from Affective Music, Meenu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012, 5400-5401
- 5. http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html
- 6. "Automatic Genre Classification of MIDI Recordings" Cory McKay Music Technology Area Department of Theory Faculty of Music McGill University, Montreal
- 7. http://www.cs.waikato.ac.nz/~ml/weka/gui_explorer.html
- 8. http://musiced.about.com/od/beginnerstheory/a/musicelements.
- 9. htmhttp://oxforddictionaries.com/definition/english/data%2Bset